Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism
نویسندگان
چکیده
Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.
منابع مشابه
Plant-Aid Remediation of Hydrocarbon-Contaminated Sites
Phytoremediation is an emerging green technology that uses plants and their associated microbes to remediate different environments contaminated with various pollutants. Phytoremediation, as an effective soil remediation technology, has gained popularity in the past ten years both in developed and developing countries. The main goal of the current article is to improve the understanding of phyt...
متن کاملPlant-Aid Remediation of Hydrocarbon-Contaminated Sites
Phytoremediation is an emerging green technology that uses plants and their associated microbes to remediate different environments contaminated with various pollutants. Phytoremediation, as an effective soil remediation technology, has gained popularity in the past ten years both in developed and developing countries. The main goal of the current article is to improve the understanding of phyt...
متن کاملIncreasing phytoremediation efficiency and reliability using novel omics approaches.
Phytoremediation is a cost-effective green alternative to traditional soil remediation technologies, but has experienced varied success in practice. The recent omics revolution has led to leaps in our understanding of soil microbial communities and plant metabolism, and some of the conditions that promote predictable activity in contaminated soils and heterogeneous environments. Combinations of...
متن کاملSelenium Biofortification and Phytoremediation Phytotechnologies: A Review.
The element selenium (Se) is both essential and toxic for most life forms, with a narrow margin between deficiency and toxicity. Phytotechnologies using plants and their associated microbes can address both of these problems. To prevent Se toxicity due to excess environmental Se, plants may be used to phytoremediate Se from soil or water. To alleviate Se deficiency in humans or livestock, crops...
متن کاملThe Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants
Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016